

(For invert channel details, see precast option at right)

SECTION B-B

PRECAST MANHOLE BASE

General notes for all detalls on this sheet:

1. All concrete shall be commercial grade concrete.
2. Channels shall be constructed to provide smooth slopes and radii to outlet pipe
3. Bases may be precast or cast in place
4. Max. pipe diameter varies with pipe material.
5. Use on 42 " and 48 " diameter manhole.
6. Extend pipe into manhole and grout smooth

Pipe(s) may extend 2 " max. beyond the interior manhole wall.
7. Location, elevation, diameter, slope, and number of pipe(s) varies, see project
8. All precast products shall conform to the requirements of ASTM C478.
9. See Std. Dwg. RD345 for pipe to manhole connections.
10. See Std. Dwg. RD336 for manhole steps details.
11. See Std. Dwg. RD336 for tracer wire details.
12. At spring line of pipe, extend channel up to crown line on 12:1 batter.

CALC. Book no. _ _ N/A	SDR DATE _-_-_-_ 14-JUL-2014	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS STANDARD MANHOLE BASE SECTION 2021	
	DATE	REVIION DESCRPTITON

SECTION B-B

SECTION A-A

PLAN

SECTION A-A

PLAN
CONNECTION OF FLEXIBLE PIPE TO MANHOLE

General notes for all detalls on this sheet:

1. All precast sections shall conform to requirements of ASTM C 478 .
2. Manhole base sections may be precast or cast-in-place.
3. All concrete shall be commercial grade concrete.
4. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans. 5. Max. pipe diameter varies with pipe material.
. All connecting pipes shall have a tracer wire, or approved alternate. See Std. Dwg. RD336 for tracer wire details.
5. Invert channels shall be constructed to provide smooth slopes and radii to outlet pipe.

When rigid pipe is used, the connecting pipe shall have a flexible, gasketted and unrestrained joint within 18 " of manhole wall. Joint type varies with manufacturer
When flexible pipe is used, install resilient connectors conforming to requirements of ASTM C923.
10. See Std. Dwgs. RD335, RD336, and RD338 for details not shown
11. See Std. Dwg. RD336 for manhole steps details.
12. See Std. Dwg. RD342 for shallow manholes.
13. See Std. Dwg. RD344 for manhole base section
14. See Std. Dwg. RD356 for manhole covers and frames, manhole adjustment rings, etc.
15. Pipe zone varies, see Std. Dwg. RD300.

note:
3 required, equally spaced, $1 / 2 \times \times 1 / 1 /{ }^{\prime \prime}$ pentagonal or hexagonal head, bronze or stainless steel. Install frame so that one bolt boss is located BOLT
BOLT-DOWN (FOR TAMPERPROOF AND WATERTIGHT) DETAIL "A"

Std. depths $11 / 2$ ", $2^{\prime \prime}, 2^{1 / 2 "} \& 3^{\prime \prime}$
Matl. to be grey cast iron ASTM A 48,
Class 358 . Tolerance on non-machin
Class 35 B. Tolerance on non-machined
surfaces to be $10.066^{\prime \prime}$, see general note 6

SECTION C-C

PLAN
MANHOLE ADJUSTMENT RING For use with Standard MENT RING
5. See Std. Dwg. RD360 for manhole frame adjustment.
6. See ODOT's QPL for alternate manhole adjustment rings.
7. Manhole grate allowed only in locations not subject to bicycle or pedestrian use.
8. See ODOT's QPL for alternate bolt-down product

$1-24^{23 / 2 "}$
Cover \& frame to be machined
SECTION A-A
36 " min. diameter cover is required for manholes with depths of 20^{\prime} or greater. (See general note 4)

NOTE:
Coat outside of frame with asphalt,
where frame is to be placed in
pvmt., conc. gutter, or walk.
PLAN
STANDARD MANHOLE COVER \& FRAME

SECTION B-B

use with Standard Manhole Frame (See general note 7)

PLAN
STANDARD MANHOLE GRATE

ALLOWABLE FILL HEIGHTS FOR CIRCULAR CONCRETE PIPE HS 25-44 LIVE LOAD

PIPE DIAMETER (INCHES)	REINFORCED PIPE					
	CLASS III		CLASS IV		CLASS V	
	MINIMUM COVER (Feet)	maximum COVER (Feet)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)
15	1.5	18	1.0	27	0.5	42
18	1.5	18	1.0	27	0.5	42
21	1.5	17	1.0	27	0.5	42
24	1.5	17	1.0	27	0.5	42
27	1.5	17	1.0	27	0.5	41
30	1.5	17	1.0	27	0.5	41
33	1.5	17	1.0	27	0.5	41
36	1.5	17	1.0	26	0.5	41
42	1.5	17	1.0	26	0.5	41
48	1.5	16	1.0	26	0.5	41
54	1.5	16	1.0	26		
60	1.5	16	1.0	26		
66	1.5	16	1.0	26		
72	1.5	16	1.0	25		

General notes for all tables on this sheet:
. Maximum height of cover is greatest vertical distance from top of pipe to finish grade
2. Minimum height of cover is least vertical distance from top of pipe to subgrade.

For ODOT, pipes with diameters greater than 72 " must be reviewed by the Geo-Environmental Section
4. For ODOT, pipes with maximum cover greater than those shown in the Tables shall be approved
by the Senior Standards Engineer.
5. For multiple pipe installations, see Std. Dwg. RD300.
6. Open ends of pipes normally require a site specific design, and may require special treatment (Sloped ends, culvert embankment protection, paved end slopes, safety end sections, or other measures).
See special details or Standard Drawings as called for on plans.

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	2.0	40	ASTM D 3034 SDR35 (46 psi stiffness)
6	2.0	40	
8	2.0	40	
10	2.0	40	
12	2.0	40	
15	2.0	40	
18	2.0	40	ASTM F 679 (46 psi stiffness)
21	2.0	40	
24	2.0	40	
27	2.0	40	
30	2.0	40	
33	2.0	40	
36	2.0	40	
42	2.0	40	
48	2.0	40	

PIPE	PROFILE WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	2.0	40	ASTM F 794 Series 46 (46 psi stiffness)
6	2.0	40	
8	2.0	40	
10	2.0	40	
12	2.0	40	
15	2.0	40	
18	2.0	40	
21	2.0	40	
24	2.0	40	
27	2.0	40	
30	2.0	40	
33	2.0	40	
36	2.0	40	
39	2.0	40	
42	2.0	40	
45	2.0	40	
48	2.0	40	

[^0]| PIPE | SOLID WALL PVC | | |
| :---: | :---: | :---: | :---: |
| DIAMETER (Inches) | MINIMUM COVER (Feet) | MAXIMUM COVER (Feet) | REMARKS |
| 14 | 2.0 | 41 | AWWA C905 DR 32.5
 (57 psi stiffness) |
| 16 | 2.0 | 41 | |
| 18 | 2.0 | 41 | |
| 20 | 2.0 | 41 | |
| 24 | 2.0 | 41 | |
| 30 | 2.0 | 41 | |
| 36 | 2.0 | 41 | |
| 42 | 2.0 | 41 | |
| 48 | 2.0 | 41 | |

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
14	1.0	46	AWWA C905 DR 26 (115 psi stiffness)
16	1.0	46	
18	1.0	46	
20	1.0	46	
24	1.0	46	
30	1.0	46	
36	1.0	46	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
14	1.0	48	AWWA C905 DR 25 (129 psi stiffness)
16	1.0	48	
18	1.0	48	
20	1.0	48	
24	1.0	48	
30	1.0	48	
36	1.0	48	
42	1.0	48	
48	1.0	48	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
14	1.0	61	AWWA C905 DR 21 (224 psi stiffness)
16	1.0	61	
18	1.0	61	
20	1.0	61	
24	1.0	61	
30	1.0	61	
36	1.0	61	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	1.0	48	
6	1.0	48	AWWA C900 DR 25 (129 psi stiffness)
8	1.0	48	
10	1.0	48	
12	1.0	48	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	1.0	69	
6	1.0	69	AWWA C900 DR 18 (364 psi stiffness)
8	1.0	69	
10	1.0	69	
12	1.0	69	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	1.0	109	
6	1.0	109	AWWA C900 DR 14
6	1.0	109	(814 psi stiffness)
10	1.0	109	
12	1.0	109	
$10 n$			

Effective Date: June 1, 2022 - November 30, 2022

NOTES

1. The wind velocity map as shown is adapted from AASHTO 2001 4th Edition "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals", Appendix C, Figure C-3 and Section 3, Figure 3-2. It uses
the wind speed map shown in Figure 1609 of the 2007 Oreion Structural Code the wind speed map shown in Figure 1609 of the 2007 Oregon Structural Code he wind velocities shown the State with special wind regions.
2. The Exposure Catagory is C
3. The mean recurrence interval is 50 -Years.
4. Mountanious terrain, gorges, and ocean
special wind regions and shall be examined for unusual wind condition
5. The Interval Height (Kz) is 30 ft
6. Alf reas with full exposure to ocean winds shall be designated 110 mph areas. 8. Areas in Multnomah and Hood River counties with full exposure to Columbia

River Gorge winds shall be designated 110 mph areas.
g. Localities may have adopted wind speed higher that shown on this map. Those 9. Localtites may have adopted wind
higher wind speed shall be used.

TAPER TYPES \& FORMULAS	
TAPER	FORMULA
Merging (Lane Closure)	"L"
Shifting	$\mathrm{LL"} / 2$ or $1 / 2 \mathrm{LL}$
Shoulder Closure	"L"/3 or $1 / 3 \mathrm{LL}$
Flagging (See Drg. TM850)	$50^{\prime}-100^{\prime}$
Downstream (Termination)	Varies (See Drawings)

* Use Pre-Construction Posted Speed to select

TEMPORARY BARRIER FLARE RATE TABLE	
\star SPEED (mph)	MINIMUM FLARE RATE
≤ 30	$8: 1$
35	$9: 1$
40	10.1
45	$12: 1$
50	$14: 1$
55	$16: 1$
60	$18: 1$
65	$9: 1$
70	$20: 1$

NOTES:

- For Lane closures where $W<10^{\prime}$, use "L" value for $W=10$.

For Shoulder closures where $\mathrm{W}<110$ ', use "L" value for $\mathrm{W}=10^{\prime}$ or calculate "L" using
formula, for S peeds $\geq 45: \mathrm{L}=\mathrm{WS}$, speeds $<45: \mathrm{L}=\mathrm{S}^{2} \mathrm{~W} / 60, \mathrm{~S}=$ Speed, $\mathrm{W}=\mathrm{Width}$

TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE				
\star SPEED (mph)	Sign Spacing (ft)			Max. Channelizing Device Spacing (ft)
	A	B	C	20
$20-30$	100	100	100	20
$35-40$	350	350	350	40
$45-55$	500	500	500	40
$60-70$	700	700	700	40
Freeway	1000	1500	2640	4

NOTES:

- Place traffic control devices on 10 ft . spacing for intersection and access rad
- When necessary. sign spacing may be adjusted to fit site conditions. When necessary, sign spacing may be adjusted to fit site conditions.
Limit spacing adjustments to 30% of the "A" dimension for all speeds.
notes
- When paved shoulders adjacent to excavations are less than
four feet wide protect longitudinal abrupt edge as shown.
- Use aggregate wedge when abrupt edge is 2 inches or greater

Extg. pavement

NOTES:

- Install PCMS beyond the outside shoulder, when possible.
- Use the appropriate type of barricade panels for PCMS location

- Use six drums in shoulder taper on 20 s spacing. The drums and
- Detail as shown is used for trailered and non-crashworthy components of - Smart Work Zone Systems

PORTABLE CHANGEABLE MESSAGE
SIGN (PCMS) INSTALLATION

NOTES:

- Install Flagger Station Lighting beyond th
- Use six tubular markers in shoulder tape

Place cart / generator / power supply off of the
shoulder, as far as practical.

FLAGGER STATION LIGHTING DELINEATION

NOTES

- Abrupt edges may be created by paving, operations, excavations or other roadway work. Use abrup
abrupt edges of 1 inch or greater.
- If the excavation is located on left side of traffic, replace th 8^{\prime} B(III)R barricades with 8^{\prime} B(III) barricades and replace the
"RIGHT" (CW21-8C) riders with "LEFT" (CW21-8A) riders.
- Continue signing and other traffic control devices
- If roll-up signs are used, attach the correct (CW21-9) plaques so tone sign faceu using hook and loop
place roll-up signs in advance of barricades.

ENERAL NOTES FOR ALL TCP DRAWINGS:

- Signs and other Traffic Control Devices (TCD)
- Place a barricade approx 20^{\prime} ahead of al
- Arrows shown in roadway are directional arrows

Arrows shown in roadway are
to indicate traffic movements.

- All signs are $48^{\prime \prime} \times 48$ " unless otherwise shown. Use fluorescent orange sheeting for the
background of all temporary warning signs.
- 。Temp Plastic Drum See TCD Spacing Tab
for max. spacing.
- - 28 " Tubular Markers See TCD Spacing Tab

UNDER TRAFFIC D/IIII UNDER CONSTRUCTION

- All diamond shaped warning signs mounted on barrier sign supports shall be 36 " by 36 "."
All other signs mounted on barrier sign supports shall not exceed 12 sq. ft. in total sign area

Low speed highways have a pre-construction posted speed of 40 mph or less.
High speed highways have a pre-construction posted speed of 45 mph or higher.

- Do not locate sign supports in locations designated for bicycle or pedestrian traffic

Combine drawing details to complete temporary traffic control for each work activity.

- To be accompanied by Dwg. Nos. TM820 \& TM821

CALC. Book no. . . - JM09-01 _ _ -	SDR DATE - - - - 04-JJAN-2022	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.		All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS TABLES, ABRUPT EDGE AND PCMS DETAILS 2021	
	DATE	REVISION DESCRIPTION

Effective Date: June 1, 2022 - November 30, 2022

NOTES:

- Do not block bicycle lanes, sidewalks, or TPAR's with sign supports. Maintain minimum widths for these facilities
- To be accompanied by Dwg. Nos. TM670, TM671, TM687, TM688 \& TM689.

Urban Areas With Curb/Sidewalk

Rural Areas

notes:

- Drill additional holes so sign can be rotated 90 degrees
and pinned when not in use.

All structural steel shall conform to ASTM A36.

- Support fits both 32 " and 42 " tall "F" barrier.
- Use for supporting a maximum 12 sq. ft. of total sign area.
- Place support at connection between two concrete barrier sections.

Weld steel according to American Welding Society (AWS) D.1.1.
Do not use clipped signs.

- Follow manufacturer recommendation when installing signs on barrier

CONCRETE BARRIER SIGN SUPPORT

Divided Highway/Freeway Medians No Curb/Sidewalk

Where temporary signs are located Where temporary signs are located
adjacent to or intrude into a paved adjacent to or intrued into a paved
shoulder or other surface used by bicycle traffic, install secondary sig minimum of $7^{\prime} 0$ " above pave surface, as shown. pavement

Effective Date: June 1, 2022 - November 30, 2022

Effective Date: June 1, 2022 - November 30, 2022

[^0]: antral notes for all tables on this sheet

 1. Maximum height of cover is greatest vertical distance from top of pipe to finish grade.
 2. Minimum height of cover is least vertical distance from top of pipe to subgrade.
 3. For ODOT, pipes with maximum cover greater than those shown in the Tables shall be approved by the Senior Standards Engineer.
 哥 4 4. For multiple pipe installations, see Std. Dwg. RD300,
 4. Open ends of pipes normally require a site specific design, and may require special treatment (Sloped ends, culvert embankment protection, paved end slopes, safety end sections, or other measures). culvert embankment protection, paved end slopes, safety end seat
 See special details or Standard Drawings as called for on plans.
