

SECTION A-A

PLAN

- Sump shown
(See general note 1)
SECTION D-D

PLAN
CONNECTION OF FLEXIBLE PIPE TO STRUCTURE

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET:

1. See Std. Dwgs. RD364, RD365, and RD366 for inlet details not shown.
2. See appropriate standard drawings or special project details for other similar structures.
3. Location, elevation, diameter, slope, and number of pipe(s) varies, see project plans.
4. Maximum pipe diameter varies with pipe material.
5. All connecting pipes shall have a tracer wire, or approved alternate.

See Std. Dwg. RD 336 for tracer wire details.
6. When rigid pipe is used, the connecting pipe shall have a flexible, gasketted and
unrestrained joint within 18 " of structure wall. Joint type varies with manufacturer
7. When flexible pipe is used, install resilient connectors conforming to requirements of ASTM C923.
8. Pipe zone varies, see Std. Dwg. RD300.

ALLOWABLE FILL HEIGHTS FOR CIRCULAR CONCRETE PIPE HS 25-44 LIVE LOAD

PIPE DIAMETER (INCHES)	REINFORCED PIPE					
	CLASS III		CLASS IV		CLASS V	
	MINIMUM COVER (Feet)	maximum COVER (Feet)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)
15	1.5	18	1.0	27	0.5	42
18	1.5	18	1.0	27	0.5	42
21	1.5	17	1.0	27	0.5	42
24	1.5	17	1.0	27	0.5	42
27	1.5	17	1.0	27	0.5	41
30	1.5	17	1.0	27	0.5	41
33	1.5	17	1.0	27	0.5	41
36	1.5	17	1.0	26	0.5	41
42	1.5	17	1.0	26	0.5	41
48	1.5	16	1.0	26	0.5	41
54	1.5	16	1.0	26		
60	1.5	16	1.0	26		
66	1.5	16	1.0	26		
72	1.5	16	1.0	25		

General notes for all tables on this sheet:
. Maximum height of cover is greatest vertical distance from top of pipe to finish grade
2. Minimum height of cover is least vertical distance from top of pipe to subgrade.

For ODOT, pipes with diameters greater than 72 " must be reviewed by the Geo-Environmental Section
4. For ODOT, pipes with maximum cover greater than those shown in the Tables shall be approved
by the Senior Standards Engineer.
5. For multiple pipe installations, see Std. Dwg. RD300.
6. Open ends of pipes normally require a site specific design, and may require special treatment (Sloped ends, culvert embankment protection, paved end slopes, safety end sections, or other measures).
See special details or Standard Drawings as called for on plans.

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	2.0	40	ASTM D 3034 SDR35 (46 psi stiffness)
6	2.0	40	
8	2.0	40	
10	2.0	40	
12	2.0	40	
15	2.0	40	
18	2.0	40	ASTM F 679 (46 psi stiffness)
21	2.0	40	
24	2.0	40	
27	2.0	40	
30	2.0	40	
33	2.0	40	
36	2.0	40	
42	2.0	40	
48	2.0	40	

PIPE	PROFILE WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	2.0	40	ASTM F 794 Series 46 (46 psi stiffness)
6	2.0	40	
8	2.0	40	
10	2.0	40	
12	2.0	40	
15	2.0	40	
18	2.0	40	
21	2.0	40	
24	2.0	40	
27	2.0	40	
30	2.0	40	
33	2.0	40	
36	2.0	40	
39	2.0	40	
42	2.0	40	
45	2.0	40	
48	2.0	40	

[^0]| PIPE | SOLID WALL PVC | | |
| :---: | :---: | :---: | :---: |
| DIAMETER (Inches) | MINIMUM COVER (Feet) | MAXIMUM COVER (Feet) | REMARKS |
| 14 | 2.0 | 41 | AWWA C905 DR 32.5
 (57 psi stiffness) |
| 16 | 2.0 | 41 | |
| 18 | 2.0 | 41 | |
| 20 | 2.0 | 41 | |
| 24 | 2.0 | 41 | |
| 30 | 2.0 | 41 | |
| 36 | 2.0 | 41 | |
| 42 | 2.0 | 41 | |
| 48 | 2.0 | 41 | |

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM CIVER (Feet)	MAXIMUMM COVER (Feet)	REMARKs
14	1.0	46	
16	1.0	46	AWWA C905 DR 26
18	1.0	46	
20	1.0	46	
24	1.0	46	
30	1.0	46	
36	1.0	46	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
14	1.0	48	AWWA C905 DR 25 (129 psi stiffness)
16	1.0	48	
18	1.0	48	
20	1.0	48	
24	1.0	48	
30	1.0	48	
36	1.0	48	
42	1.0	48	
48	1.0	48	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
14	1.0	61	AWWA C905 DR 21 (224 psi stiffness)
16	1.0	61	
18	1.0	61	
20	1.0	61	
24	1.0	61	
30	1.0	61	
36	1.0	61	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	1.0	48	
6	1.0	48	AWWA C900 DR 25 (129 psi stiffness)
8	1.0	48	
10	1.0	48	
12	1.0	48	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	1.0	69	
6	1.0	69	AWWA C900 DR 18 (364 psi stiffness)
8	1.0	69	
10	1.0	69	
12	1.0	69	

PIPE	SOLID WALL PVC		
DIAMETER (Inches)	MINIMUM COVER (Feet)	MAXIMUM COVER (Feet)	REMARKS
4	1.0	109	
6	1.0	109	AWWA C900 DR 14
6	1.0	109	(814 psi stiffness)
10	1.0	109	
12	1.0	109	
$10 n$			

SECTION B－B MEDIAN ISLAND CROSSING （CUT THROUGH）

－Material can be
softscaping or softscapaing or
hardscaping hardscaping

MEDIAN CUT－THROUGH CROSSING

7．Grade breaks at the top and bottom of curb ramp runs shall be perpendicular to the
direction of the ramp sun．Grade breaks shall not be permitted on the surface of ramp runs direction of the ramp run．Grade breaks shall not be permitted on the surface
and turning spaces．Surface slopes that meet at grade breaks shall be flush．
8．Curb type and island width as shown on plans or as directed
9．See project plans for details not shown．
See Std．Dwg．RD707 for island nose treatment．
See Std．Dwg．RD705 for expansion and contraction joint spacing．
See Std．Dwa． related details．
10．Details intended for pedestrian route only．For multi－use path，see project plans for 10．Details intended
specific details．
11．When crossing surface grade is $\leq 5 \%$ ，a level area is not required．
12．On or along state highways，curb and gutter is required at curb ramps．
13．Raised islands in crossings shall have accessible curb ramps at all crossings or all crossings
shall be cut through with the street．

禺
Level area a
Level area（Turning space／landing）
Unobstructed $4.5^{\prime} \times 4.5^{\prime}$＇
With obstruction $4.5^{\prime} \times 5.5^{\prime}$（Longer dimension in direction of pedestrian street rossing）．For the purposes of this application，a max． 2.0% finished surface slope （for drainage）is considered level．
苜：D：De：Detectable warning surface
$\leftrightarrow \quad$ Cross slope 1.5% max
Running slope 7.5% max
．
$\square \quad$ Flare slope
－Zero curb exposure
［」 Clear space $4.5^{\prime} \times 5.5$
Clear space $4.5^{\prime} \times 5.5^{\prime}$
Longer dimension in direction of pedestrian street crossing）

CALC．Book no．．．＿＿N／A	SDR DATE＿＿＿＿－14－JIAN－2022	
The selection and use of this Standard Drawing，while de－ signed in accordance with generally accepted engineer－ ing principles and practices， is the sole responsibility of the user and should not be used without consulting a Registered Professional En－ gineer．	NOTE：	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS ACCESSIBLE ROUTE ISLANDS	
		2021
	DATEE	REvSED Detall ANO RETITS
	11－2021	Revise notes

Provide compacted backfill
adjacent to curb and sidewalk

TYPICAL SETBACK SIDEWALK CROSS SECTION
$\mathrm{E}=$ curb exposure, see general note 6

NON-PLANTED SOFTSCAPE CROSS SECTION

NOTES
. Appoftscape materials allowed by jurisdiction.
. Loved softscape materials:
Loose, durable round rock $2^{\prime \prime}-4$ "in diameter
b) Wood chips/bark multh
d) Sand
ed aggregate or pea gravel allowed.
4. Install softscape material flush with the top of sidewalk.

Sidewalk pay limit.
Driveway pay limit, varies by option,
(See general note 8)
© Cro (Max. 2.0\% finished surface slope) (Normal sidewalk cross slope)

GENERAL NOTES FOR ALL DETAILS ON THIS SHEET

1. Include additional paved or unpaved 2 ' shy distance to vertical faces higher than 5 ' such as retaining walls, sound walls, fences and buildings
Curb type and sidewalk width as shown on plans or as directed
On sidewalks 8^{\prime} and wider, provide a longitudinal joint at the midpoint
2. Install 3 " pvc weep hole pipes in sidewalks where shown on plans, and allowed by jurisdiction. Place contraction joint over top of pipe. See Std. Dwg. RD700 for weep hole details.
3. Provide expansion joints around poles, posts, boxes, at ends of each driveway, and other fixtures which protrude through or against the structures.
For sidewalk, monolithic curb \& sidewalk, const. expansion joints at 45' maximum spacing. See Std. Dwg. RD722 for expansion joint details.
4. Const. contraction joints at 15 ' maximum spacing, and at ends of each curb ramp.

See Std. Dwg. RD722 for contraction joint details,
6. Curb and gutter shown; see project plans for the curb design specified. For curb details, see Std. Dwgs. RD700 \& RD70
ODOT standard $\mathrm{E}=\mathbf{7}^{\prime \prime}$
7. Sidewalk details are based on ODOT applicable standards.
8. Driveway encroaches into sidewalk shown; see project plans for the driveway design specified For driveway details not shown, see Std. Dwgs. RD725, RD730, RD735, RD740, For driveway detal
RD745 \& RD750.
9. See project plans for details not shown
10. Provide plantings in areas 12 SF or greater, as shown or directed. Treat areas less than 12 SF with mulch surfacing.

| SDR DATE |
| :--- | :--- |

OPTION M
PARTIALLY LOWERED SIDEWALK

SECTION A-A

FULLY LOWERED SIDEWALK

3. The detectable warning surface shall extend the full width of the curb ramp opening, shared use path, blended transition, turning space, or other roadway entrance as applicable. A gap
up to 2 inches on each side of the detectable warning surface is permitted (measured at the leading edge of the detectable warning surface panel as shown in Detail " A ").

DETECTABLE WARNING SURFACE DETAIL

DETAIL "A"

TRUNCATED DOME SPACING

TRUNCATED DOME DETAILS

. Detectable warning surface shall be placed at the back of curb for a minimum depth of 2 ft . in he direction of pedestrian travel at curb ramps that are adjiacent to traffic. Detectable warn surface may be radial or rectangular, but must comply with the truncated dome size and spacing standards. Detectable warning surface may be cut to meet necessary shape as shown
in plans. Detectable warning surface across a grade break is prohibited. Place abutting panel within $1 / 4$ inch of each other and install anchors, as specified by manufacturers, along cut edge.
5. Color to be safety yellow if no color specified in construction note. Alternative colors require a design exception on or along state highways.
6. Detectable warning surface shall be used in the following locations a) Curb ramps at street crossings. b) Crossing islands (Accessible Route Islands) b) Crossing island
c) Rail crossings.
7. Where public transportation stations (rail, bus, etc.) use platform boarding, detectable warning surface shall be placed along the full edge length of the station, when not protected by platform screens or guards, (see Std. Dwg. RD908),
8. Detectable warning surface shall not be used on the following locations.
a) End of sidewalk transitions that are not at a crosswalk, (see Std
ot at a crossalk, (see Std. Dwgs. RD950, RD952 and Driveways
c) Parking lots, access aisles and passenger loading zones where curb ramp does not lead to vehicular way.
9. Where no curb is present, the detectable warning surface shall be placed at the edge of the roadway
0. On or along state highways, curb and gutter is required at curb ramps.

LEGEND:
曲:/:) De:ectable warning surface
$\hookleftarrow \quad \begin{aligned} & \text { Cross slope } 1.5 \% \text { max. } \\ & \text { (Max. } 2.0 \% \text { finished surface slope) }\end{aligned}$ (Normal sidewalk cross slope)
$-\quad$ Running slope 7.5% max
(Max. 8.3% finished surface slope)

CALC. Book no. _ _ _ N/A	SDR DATE ------- 19-JULY-2021	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS DETECTABLE WARNING SURFACE DETAILS 2021	
	DATE	DRAWNC CREATED ${ }^{\text {REVISION DEECRIPTION }}$
	-	

GEOTEXTILE/WIRE MESH/AGGREGATE - TYPE 2
NOT TO SCALE

PREFABRICATED FILTER INSERT - TYPE 3 NOT TO SCALE

NOTE:
Install sod around the perim
of inlets within 36 hours of harvest of the sod

SOD PROTECTION - TYPE 6 not to scale
 AREA DRAIN PLAN

General Installation Notes:
a. Signing details shown on this sheet are intended to convey "typical" conditions only Individual locations may require installation different from those shown
For guidance regarding unique installations or exceptions call the Project Sign Designer or Region Traffic Section.
b. Locate breakaway supports away from ditches to avoid problems with erosion, corrosion, See Dwg. No. TM635 for more information.
c. For wood post support details see Dwg. No. TM670
d. For perforated steelsquare tube support details see
Dwg. No. TM681. Dwg. No. TM681
e. For triangular base breakaway support details see
Dwg. No. TM602. Dwg. No. TM602
f. For multi-post breakaway support details see Dwg. No. TM600
g. Mounting heights should not be more than 3 inches more than the minimum heights shown, where practical.
h. 2" vertical spacing between all signs.

Notes:

1). 6^{\prime} minimum if behind barrier.
2). 2^{\prime} minimum if restricted R / W
3). 20^{\prime} for ramp terminals.
4). 8^{\prime} minimum if bicycle path underneath
5). 8^{\prime} minimum if secondary signs attached.
6). 5 ' minimum if outside clearzone, in rural
7). For multi-post installations measure distances
7). For multi-post installations me
from post closest to roadway.

Effective Date: June 1, 2022 - November 30, 2022

Effective Date: June 1, 2022 - November 30, 2022

Effective Date: June 01, 2022 - November 30, 2022

Effective Date: June 1, 2022 - November 30, 2022

General note:
1.) Use control points to make continous narrow guideline as specified

* Control points are placed along the lane line for all longitudinal lines except the following (ND)	For center
lines only	\(\begin{aligned} \& A control point layout 4" offset from the lane line is required

\& for a ND line when used as a center line.\end{aligned}\)

To be accompanied by Standard Dwg. Nos. TM500 thru TM504

CALC. Book no. _ _ N/A _ _ _ _ _ _	SDR DATE	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE: All	All material and workmanship shall be in accordance with the current Oregon Standard Specifications.
	OREGON STANDARD DRAWINGS	
	ALIGNMENT LAYOUT: GENERAL	
	2021	
	$\frac{\text { DATE }}{\text { OT/ } 2020 ~ E x ~}$	

The selection and use of this Standard Drawing, while designed in accordance with ing principles and practices, is the sole responsibility of the user and should not be Red without consulting a gineer.

NOTES

1. The wind velocity map as shown is adapted from AASHTO 2001 4th Edition "Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals", Appendix C, Figure C-3 and Section 3, Figure 3-2. It uses
the wind speed map shown in Figure 1609 of the 2007 Oreion Structural Code the wind speed map shown in Figure 1609 of the 2007 Oregon Structural Code he wind velocities shown the State with special wind regions.
2. The Exposure Catagory is C
3. The mean recurrence interval is 50 -Years.
4. Mountanious terrain, gorges, and ocean
special wind regions and shall be examined for unusual wind condition
5. The Interval Height (Kz) is 30 ft
6. Alf reas with full exposure to ocean winds shall be designated 110 mph areas. 8. Areas in Multnomah and Hood River counties with full exposure to Columbia

River Gorge winds shall be designated 110 mph areas.
g. Localities may have adopted wind speed higher that shown on this map. Those 9. Localtites may have adopted wind
higher wind speed shall be used.

Note:
1)When signs are placed on opposing sides
of post ${ }^{3 / \prime \prime}{ }^{\prime \prime}$ 3" $^{\prime \prime}$ lag screws can be used of post, $3 / s^{* x} \times 3^{\prime \prime}$ lag screws opan be used
instead of throug bolt instead of through bolt.
2) Use nylon and stainles
a
signs are placed on both sides of poshers when 3) Burr threads at junction with nut
when locknuts are not used.
when locknuts are not used.
4) Post bolts to extend beyond the tightened
nuts within the limits of $/_{4}$ " to I"

Stainless steel bonded sealing washer with neoprene layer is an acceptable substitue
** Acceptable substitute
for nylon locking nuts.
ANCO PIN-LOC
TRI-LOC* Top Lock Locknut

SIGN ATTACHMENT DETAIL

Stainless steel bonded sealing washer with neoprene layer is an acceptable substitue Note: This optional detail is to be used
only when specified on a project. OPTIONAL WOOD POST LAG SCREW DETAIL

CALC. BOOK No. .	SDR DATE. - _-_ - 10-JUL-2020	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.	NOTE:	All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS	
	SIGN ATTACHMENTS	
	2021	
	隹	Added optional lag screw detail.

Signs mounted to vertical posts that use stainless stee/ clamps shall not be wider than $36^{\prime \prime}$. Use 2 clamps for
all sign $48^{\prime \prime}$ to 60 " in height.

STAINLESS STEEL CLAMP (SSC) DETAIL No Scale

*- L maximum is $14^{\prime}-0$ "
SIGN ELEVATION
No Scale

ROAD NAME SIGN STRUCTURE MOUNT DETAIL

GENERAL NOTES

1. For Secondary Sign Mounts See TM678.

Effective Date: June 1, 2022 - November 30, 2022

TAPER TYPES \& FORMULAS	
TAPER	FORMULA
Merging (Lane Closure)	"L"
Shifting	$\mathrm{LL"} / 2$ or $1 / 2 \mathrm{LL}$
Shoulder Closure	"L"/3 or $1 / 3 \mathrm{LL}$
Flagging (See Drg. TM850)	$50^{\prime}-100^{\prime}$
Downstream (Termination)	Varies (See Drawings)

* Use Pre-Construction Posted Speed to select

TEMPORARY BARRIER FLARE RATE TABLE	
\star SPEED (mph)	MINIMUM FLARE RATE
≤ 30	$8: 1$
35	$9: 1$
40	10.1
45	$12: 1$
50	$14: 1$
55	$16: 1$
60	$18: 1$
65	$9: 1$
70	$20: 1$

NOTES:

- For Lane closures where $W<10^{\prime}$, use "L" value for $W=10$.

For Shoulder closures where $\mathrm{W}<110$ ', use "L" value for $\mathrm{W}=10^{\prime}$ or calculate "L" using
formula, for S peeds $\geq 45: \mathrm{L}=\mathrm{WS}$, speeds $<45: \mathrm{L}=\mathrm{S}^{2} \mathrm{~W} / 60, \mathrm{~S}=$ Speed, $\mathrm{W}=\mathrm{Width}$

TRAFFIC CONTROL DEVICES (TCD) SPACING TABLE				
\star SPEED (mph)	Sign Spacing (ft)			Max. Channelizing Device Spacing (ft)
	A	B	C	20
$20-30$	100	100	100	20
$35-40$	350	350	350	40
$45-55$	500	500	500	40
$60-70$	700	700	700	40
Freeway	1000	1500	2640	4

NOTES:

- Place traffic control devices on 10 ft . spacing for intersection and access rad
- When necessary. sign spacing may be adjusted to fit site conditions. When necessary, sign spacing may be adjusted to fit site conditions.
Limit spacing adjustments to 30% of the "A" dimension for all speeds.
notes
- When paved shoulders adjacent to excavations are less than
four feet wide protect longitudinal abrupt edge as shown.
- Use aggregate wedge when abrupt edge is 2 inches or greater

Extg. pavement

NOTES:

- Install PCMS beyond the outside shoulder, when possible.
- Use the appropriate type of barricade panels for PCMS location

- Use six drums in shoulder taper on 20 s spacing. The drums and
- Detail as shown is used for trailered and non-crashworthy components of - Smart Work Zone Systems

PORTABLE CHANGEABLE MESSAGE
SIGN (PCMS) INSTALLATION

NOTES:

- Install Flagger Station Lighting beyond th
- Use six tubular markers in shoulder tape

Place cart / generator / power supply off of the
shoulder, as far as practical.

FLAGGER STATION LIGHTING DELINEATION

NOTES

- Abrupt edges may be created by paving, operations, excavations or other roadway work. Use abrup
abrupt edges of 1 inch or greater.
- If the excavation is located on left side of traffic, replace th 8^{\prime} B(III)R barricades with 8^{\prime} B(III) barricades and replace the
"RIGHT" (CW21-8C) riders with "LEFT" (CW21-8A) riders.
- Continue signing and other traffic control devices
- If roll-up signs are used, attach the correct (CW21-9) plaques so tone sign faceu using hook and loop
place roll-up signs in advance of barricades.

ENERAL NOTES FOR ALL TCP DRAWINGS:

- Signs and other Traffic Control Devices (TCD)
- Place a barricade approx 20^{\prime} ahead of al
- Arrows shown in roadway are directional arrows

Arrows shown in roadway are
to indicate traffic movements.

- All signs are $48^{\prime \prime} \times 48$ " unless otherwise shown. Use fluorescent orange sheeting for the
background of all temporary warning signs.
- 。Temp Plastic Drum See TCD Spacing Tab
for max. spacing.
- - 28 " Tubular Markers See TCD Spacing Tab

UNDER TRAFFIC D/IIII UNDER CONSTRUCTION

- All diamond shaped warning signs mounted on barrier sign supports shall be 36 " by 36 "."
All other signs mounted on barrier sign supports shall not exceed 12 sq. ft. in total sign area

Low speed highways have a pre-construction posted speed of 40 mph or less.
High speed highways have a pre-construction posted speed of 45 mph or higher.

- Do not locate sign supports in locations designated for bicycle or pedestrian traffic

Combine drawing details to complete temporary traffic control for each work activity.

- To be accompanied by Dwg. Nos. TM820 \& TM821

CALC. Book no. . . - JM09-01 _ _ -	SDR DATE - - - - 04-JJAN-2022	
The selection and use of this Standard Drawing, while designed in accordance with generally accepted engineering principles and practices, is the sole responsibility of the user and should not be used without consulting a Registered Professional Engineer.		All material and workmanship shall be in accordance with the current Oregon Standard Specifications
	OREGON STANDARD DRAWINGS TABLES, ABRUPT EDGE AND PCMS DETAILS 2021	
	DATE	REVISION DESCRIPTION

Effective Date: June 1, 2022 - November 30, 2022

NOTES:

- Do not block bicycle lanes, sidewalks, or TPAR's with sign supports. Maintain minimum widths for these facilities
- To be accompanied by Dwg. Nos. TM670, TM671, TM687, TM688 \& TM689.

Urban Areas With Curb/Sidewalk

Rural Areas

notes:

- Drill additional holes so sign can be rotated 90 degrees
and pinned when not in use.

All structural steel shall conform to ASTM A36.

- Support fits both 32 " and 42 " tall "F" barrier.
- Use for supporting a maximum 12 sq. ft. of total sign area.
- Place support at connection between two concrete barrier sections.

Weld steel according to American Welding Society (AWS) D.1.1.
Do not use clipped signs.

- Follow manufacturer recommendation when installing signs on barrier

CONCRETE BARRIER SIGN SUPPORT

Divided Highway/Freeway Medians No Curb/Sidewalk

Where temporary signs are located Where temporary signs are located
adjacent to or intrude into a paved adjacent to or intrued into a paved
shoulder or other surface used by bicycle traffic, install secondary sig minimum of $7^{\prime} 0$ " above pave surface, as shown. pavement

Effective Date: June 1, 2022 - November 30, 2022

[^0]: antral notes for all tables on this sheet

 1. Maximum height of cover is greatest vertical distance from top of pipe to finish grade.
 2. Minimum height of cover is least vertical distance from top of pipe to subgrade.
 3. For ODOT, pipes with maximum cover greater than those shown in the Tables shall be approved by the Senior Standards Engineer.
 哥 4 4. For multiple pipe installations, see Std. Dwg. RD300,
 4. Open ends of pipes normally require a site specific design, and may require special treatment (Sloped ends, culvert embankment protection, paved end slopes, safety end sections, or other measures). culvert embankment protection, paved end slopes, safety end seat
 See special details or Standard Drawings as called for on plans.
